yProcessingClub

すみません、許してください

TIME-FREQUENCY ANALYSIS Example 1.3

TIME-FREQUENCY ANALYSISの例題を解き進める.


Example 1.3


\begin{eqnarray*}
s(t) = (\alpha / \pi)^{1/4} \mathrm{e}^{-\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t}
\end{eqnarray*}
のBandwidth \sigma_\omegaを求めよ.




解答

解答方針

 {\sigma_{\omega}}^2 = \langle \omega^2 \rangle - \langle \omega \rangle^2であり,

今回は1.4 SIMPLE CALCULATION TRICKSで紹介されている
\langle \omega \rangle = \int \omega |S(\omega)|^2d\omega=\int s^* (t) \frac{1}{j}\frac{d}{dt}s(t)dt

\begin{eqnarray*}
\langle \omega^2 \rangle = \int \omega^2 |S(\omega)|^2d\omega&=&\int s^* (t) \left( \frac{1}{j}\frac{d}{dt} \right) ^2 s(t)dt\\
&=&-\int s^*(t)\frac{d^2}{dt^2}s(t)dt\\
&=&\int \left|\frac{d}{dt}s(t) \right|^2dt
\end{eqnarray*}
の結果を用いて計算する.


\langle \omega \rangleの導出


\begin{eqnarray*}
\frac{1}{j}\frac{d}{dt}s(t)&=&\frac{1}{j} (\alpha / \pi)^{1/4}  \left( -\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t \right)' \mathrm{e}^{-\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t}\\
&=& \frac{1}{j} (\alpha / \pi)^{1/4}  \left( -\alpha t + j \beta t + j\omega_0 \right) \mathrm{e}^{-\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t}\\
&=& (\alpha / \pi)^{1/4}  \left( j\alpha t + \beta t + \omega_0 \right) \mathrm{e}^{-\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t}\\
\end{eqnarray*}

s^*(t) =  (\alpha / \pi)^{1/4} \mathrm{e}^{-\alpha t^2 /2 - j\beta t^2 /2 - j \omega_0 t}


\begin{eqnarray*}
\langle \omega \rangle &=&\int s^* (t) \frac{1}{j}\frac{d}{dt}s(t)dt\\
&=& \int (\alpha / \pi)^{1/4} \mathrm{e}^{-\alpha t^2 /2 - j\beta t^2 /2 - j \omega_0 t} (\alpha / \pi)^{1/4}  \left( j\alpha t + \beta t + \omega_0 \right) \mathrm{e}^{-\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t}dt\\
&=& \sqrt{\frac{\alpha}{\pi}} \int \left( j\alpha t + \beta t + \omega_0 \right) \mathrm{e}^{-\alpha t^2}dt\\
&=& \sqrt{\frac{\alpha}{\pi}} \int \left( j\alpha t + \beta t \right) \mathrm{e}^{-\alpha t^2}dt + \omega_0\sqrt{\frac{\alpha}{\pi}} \int \mathrm{e}^{-\alpha t^2}dt\\
&=& \sqrt{\frac{\alpha}{\pi}} 0 +  \omega_0 \sqrt{\frac{\alpha}{\pi}} \sqrt{\frac{\pi}{\alpha}}\\
&=& \omega_0 
\end{eqnarray*}




\langle \omega^2 \rangleの導出


\begin{eqnarray*}
\langle \omega^2 \rangle &=&\int \left|\frac{d}{dt}s(t) \right|^2dt\\
&=& \int \left| (\alpha / \pi)^{1/4}  \left( -\alpha t + j \beta t + j\omega_0 \right) \mathrm{e}^{-\alpha t^2 /2 + j\beta t^2 /2 + j \omega_0 t} \right|^2 dt\\
&=&  \sqrt{\frac{\alpha}{ \pi}}  \int \left| -\alpha t + j \beta t + j\omega_0 \right|^2  \mathrm{e}^{-\alpha t^2}dt\\
&=& \sqrt{\frac{\alpha}{ \pi}}  \int \left( \left( \alpha t \right)^2  + \left(  \beta t + \omega_0 \right)^2 \right) \mathrm{e}^{-\alpha t^2}dt\\
&=& \sqrt{\frac{\alpha}{ \pi}}  \int \left(  \alpha^2 t ^2  +  \beta ^2 t^2 + 2 \beta \omega_0 t + \omega_0 ^2  \right) \mathrm{e}^{-\alpha t^2}dt\\
&=& \sqrt{\frac{\alpha}{ \pi}}  \int \left(  \left( \alpha^2 + \beta^2\right) t ^2  + 2 \beta \omega_0 t + \omega_0 ^2  \right) \mathrm{e}^{-\alpha t^2}dt\\
&=& \sqrt{\frac{\alpha}{ \pi}}  \left(
\left(  \alpha^2 + \beta^2  \right) \int  t^2 \mathrm{e}^{-\alpha t^2}dt + 2 \beta \omega_0 \int  t \mathrm{e}^{-\alpha t^2}dt+ \omega_0 ^2 \int  \mathrm{e}^{-\alpha t^2}dt \right) \cdots (*)\\
&=& \sqrt{\frac{\alpha}{ \pi}}  \left(
\left(  \alpha^2 + \beta^2  \right) \frac{1}{2 \alpha} \sqrt{\frac{\pi}{\alpha}} + 2 \beta \omega_0 0+ \omega_0 ^2 \sqrt{\frac{\pi}{\alpha}}  \right) \cdots (**)\\
&=& \frac{\alpha^2 + \beta^2}{2 \alpha} + \omega_0 ^2
\end{eqnarray*}

(*)(**)の変形に関しては,
ガウス積分の公式から\int  t^2 \mathrm{e}^{-\alpha t^2}dt = \frac{1}{2 \alpha} \sqrt{\frac{\pi}{\alpha}}\int  \mathrm{e}^{-\alpha t^2}dt= \sqrt{\frac{\pi}{\alpha}}を用いた.
また, \int  t^2 \mathrm{e}^{-\alpha t^2}dt\int (偶関数) dt = 0である.


まとめ


\begin{eqnarray*}
{\sigma_{\omega}}^2 &=& \langle \omega^2 \rangle - \langle \omega \rangle^2\\
&=& \frac{\alpha^2 + \beta^2}{2 \alpha} + \omega_0 ^2 - \omega_0 ^2\\
&=& \frac{\alpha^2 + \beta^2}{2 \alpha} 
\end{eqnarray*}