yProcessingClub

すみません、許してください

TIME-FREQUENCY ANALYSIS Example 1.1

TIME-FREQUENCY ANALYSISの例題を解き進める.


Example 1.1


\begin{eqnarray*}
s(t) = (\alpha / \pi)^{1/4} \mathrm{e}^{-\alpha(t-t_0)^2/2+j\varphi(t)}
\end{eqnarray*}
標準偏差\sigma_tを求めよ.




解答

 {\sigma_t}^2 = \langle t^2 \rangle - \langle t \rangle^2より,
\langle t^2 \rangle\langle t \rangleをそれぞれ求める.


\langle t \rangleの導出

\langle t \rangleは以下で与えられる.

\begin{eqnarray*}
\langle t \rangle &=& \int t | s(t) |^2dt
\end{eqnarray*}

まず | s(t) | を求める.

\begin{eqnarray*}
 | s(t) | &=&  | (\alpha / \pi)^{1/4} \mathrm{e}^{-\alpha(t-t_0)^2/2+j\varphi(t)} |\\
&=&  | (\alpha / \pi)^{1/4}| |\mathrm{e}^{-\alpha(t-t_0)^2/2} || \mathrm{e}^{j\varphi(t)} |\\
&=&  (\alpha / \pi)^{1/4}\mathrm{e}^{-\alpha(t-t_0)^2/2}
\end{eqnarray*}
(※ | \mathrm{e}^{j\varphi(t)} | = \sqrt{\mathrm{e}^{j\varphi(t)}\mathrm{e}^{-j\varphi(t)}}=1


\begin{eqnarray*}
\langle t \rangle &=& \int t | s(t) |^2dt\\
&=& \int t ( (\alpha / \pi)^{1/4}\mathrm{e}^{-\alpha(t-t_0)^2/2} )^2dt\\
&=& \int t ( (\alpha / \pi)^{1/2}\mathrm{e}^{-\alpha(t-t_0)^2} )dt\\
&=& \sqrt{\frac{\alpha}{\pi}}\int t \mathrm{e}^{-\alpha(t-t_0)^2} dt
\end{eqnarray*}

次に\int t \mathrm{e}^{-\alpha(t-t_0)^2} dtを解く.
次のように変形する.
\int t \mathrm{e}^{-\alpha(t-t_0)^2} dt=\int (t-t_0) \mathrm{e}^{-\alpha(t-t_0)^2} dt + t_0 \int  \mathrm{e}^{-\alpha(t-t_0)^2} dt
右辺第一項を解く.
t-t_0=vと置くと,
\int (t-t_0) \mathrm{e}^{-\alpha(t-t_0)^2} dt = \int v \mathrm{e}^{-\alpha v^2} dv
vは奇関数,\mathrm{e}^{-\alpha v^2}は偶関数なので,v \mathrm{e}^{-\alpha v^2}は奇関数.
よって, \int v \mathrm{e}^{-\alpha v^2} dv = 0となる.
次に右辺第二項を解くのだが,
ガウス積分の公式から\int  \mathrm{e}^{-\alpha(t-t_0)^2} dt = \sqrt{\frac{\pi}{\alpha}}なので,
 t_0 \int  \mathrm{e}^{-\alpha(t-t_0)^2} dt = t_0 \sqrt{\frac{\pi}{\alpha}}
以上より,
\int t \mathrm{e}^{-\alpha(t-t_0)^2} dt =  t_0 \sqrt{\frac{\pi}{\alpha}}

以上より,

\begin{eqnarray*}
\langle t \rangle &=& \sqrt{\frac{\alpha}{\pi}}\int t \mathrm{e}^{-\alpha(t-t_0)^2} dt\\
&=&  \sqrt{\frac{\alpha}{\pi}} t_0 \sqrt{\frac{\pi}{\alpha}}\\
&=& t_0
\end{eqnarray*}


\langle t^2 \rangleの導出

\langle t^2 \rangleは以下で与えられる.

\begin{eqnarray*}
\langle t^2 \rangle &=& \int t^2 | s(t) |^2dt
\end{eqnarray*}
\langle t \rangleを導出した際の結果を用いて,

\begin{eqnarray*}
\langle t^2 \rangle &=& \int t^2 | s(t) |^2dt
&=&  \sqrt{\frac{\alpha}{\pi}}\int t^2 \mathrm{e}^{-\alpha(t-t_0)^2} dt
\end{eqnarray*}

\int t^2 \mathrm{e}^{-\alpha(t-t_0)^2} dtのところを解く.

\begin{eqnarray*}
\int t^2 \mathrm{e}^{-\alpha(t-t_0)^2} dt
&=& \int (t-t_0)^2 \mathrm{e}^{-\alpha(t-t_0)^2}dt + 2t_0 \int t \mathrm{e}^{-\alpha(t-t_0)^2}dt - {t_0}^2 \int \mathrm{e}^{-\alpha(t-t_0)^2}dt\\
&=& \frac{1}{2\alpha}  \sqrt{\frac{\pi}{\alpha}} +2t_0 \times  t_0 \sqrt{\frac{\pi}{\alpha}} - {t_0} ^2  \times  \sqrt{\frac{\pi}{\alpha}}\\
&=&\frac{1}{2\alpha}  \sqrt{\frac{\pi}{\alpha}} + {t_0} ^2  \sqrt{\frac{\pi}{\alpha}}
\end{eqnarray*}
ガウス積分より \int (t-t_0)^2 \mathrm{e}^{-\alpha(t-t_0)^2}dt = \int v^2 \mathrm{e}^{-\alpha v^2}dv = \frac{1}{2\alpha}  \sqrt{\frac{\pi}{\alpha}}を用いた)


よって,

\begin{eqnarray*}
\langle t^2 \rangle
&=&  \sqrt{\frac{\alpha}{\pi}}\int t^2 \mathrm{e}^{-\alpha(t-t_0)^2} dt\\
&=&  \sqrt{\frac{\alpha}{\pi}} \left( \frac{1}{2\alpha}  \sqrt{\frac{\pi}{\alpha}} + {t_0} ^2  \sqrt{\frac{\pi}{\alpha}} \right)\\
&=& \frac{1}{2\alpha} +{t_0} ^2
\end{eqnarray*}



以上より,

\begin{eqnarray*}
{\sigma_t}^2 &=& \langle t^2 \rangle - \langle t \rangle^2\\
&=&\frac{1}{2\alpha} +{t_0} ^2 - {t_0} ^2\\
&=& \frac{1}{2\alpha}
\end{eqnarray*}